2015 article
Source en.wikipedia.org
Intrinsically photosensitive Retinal Ganglion Cells (ipRGCs), also called photosensitive Retinal Ganglion Cells (pRGC), or melanopsin-containing retinal ganglion cells, are a type of neuron (nerve cell) in the retina of the mammalian eye. They were discovered in 1923, forgotten, rediscovered in the early 1990s, and are, unlike other retinal ganglion cells, intrinsically photosensitive. This means that they are a third class of retinal photoreceptors, excited by light even when all influences from classical photoreceptors (rods and cones) are blocked (either by applying pharmacological agents or by dissociating the ganglion cell from the retina). Photosensitive ganglion cells contain the photopigment melanopsin. The giant retinal ganglion cells of the primate retina are examples of photosensitive ganglion cells.
…
Research in humans
Attempts were made to hunt down the receptor in humans, but humans posed special challenges and demanded a new model. Unlike in other animals, researchers could not ethically induce rod and cone loss either genetically or with chemicals so as to directly study the ganglion cells. For many years, only inferences could be drawn about the receptor in humans, though these were at times pertinent.
In 2007, Zaidi and colleagues published their work on rodless, coneless humans, showing that these people retain normal responses to nonvisual effects of light. The identity of the non-rod, non-cone photoreceptor in humans was found to be a ganglion cell in the inner retina as shown previously in rodless, coneless models in some other mammals. The work was done using patients with rare diseases that wiped out classic rod and cone photoreceptor function but preserved ganglion cell function. Despite having no rods or cones, the patients continued to exhibit circadian photoentrainment, circadian behavioural patterns, melatonin suppression, and pupil reactions, with peak spectral sensitivities to environmental and experimental light that match the melanopsin photopigment. Their brains could also associate vision with light of this frequency. Clinicians and scientists are now seeking to understand the new receptor’s role in human diseases and, as discussed below, blindness.
Full article on retinal ganglion cells can be read here.